Evidence-Based Guidelines for Cardiovascular Disease Prevention in Women: 2007 Update

Circulation published online Feb 19, 2007;
DOI: 10.1161/CIRCULATIONAHA.107.181546

Circulation is published by the American Heart Association. 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2007 American Heart Association. All rights reserved. Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org

Subscriptions: Information about subscribing to Circulation is online at http://circ.ahajournals.org/subscriptions/

Permissions: Permissions & Rights Desk, Lippincott Williams & Wilkins, 351 West Camden Street, Baltimore, MD 21202-2436. Phone 410-5280-4050. Fax: 410-528-8550. Email: journalpermissions@lww.com

Reprints: Information about reprints can be found online at http://www.lww.com/static/html/reprints.html
Evidence-Based Guidelines for Cardiovascular Disease Prevention in Women: 2007 Update

Lori Mosca, MD, MPH, PhD, Chair; Carole L. Banka, PhD; Emelia J. Benjamin, MD; Kathy Berra, MSN, NP; Cheryl Bushnell, MD; Rowena J. Dolor, MD, MHS; Theodore G. Ganiats, MD; Antoinette S. Gomes, MD; Heather L. Gornik, MD, MHS; Clarissa Gracia, MD, MSCE; Martha Gulati, MD, MS; Constance K. Haan, MD; Debra R. Judelson, MD; Nora Keenan, PhD; Ellie Kelepouris, MD; Erin D. Michos, MD; L. Kristin Newby, MD, MHS; Suzanne Oparil, MD; Pamela Ouyang, MD; Mehmet C. Oz, MD; Diana Pettiti, MD, MS, MPH; Vivian W. Pinn, MD; Rita F. Redberg, MD, MSc; Rosalyn Scott, MD; Katherine Sherif, MD; Sidney C. Smith, Jr, MD; George Sopko, MD, MPH; Robin H. Steinhorn, MD; Neil J. Stone, MD; Kathryn A. Taubert, PhD; Barbara A. Todd, MSN, CRNP; Elaine Urbina, MD; Nanette K. Wenger, MD; for the Expert Panel/Writing Group*

In addition, this report has been endorsed by the American Academy of Physician Assistants; American Association for Clinical Chemistry; American Association of Cardiovascular and Pulmonary Rehabilitation; American College of Chest Physicians; American College of Emergency Physicians; American Diabetes Association; American Geriatrics Society; American Society for Preventive Cardiology; American Society for Echocardiography; American Society for Nuclear Cardiology; Association of Women’s Health, Obstetric and Neonatal Nurses; Global Alliance for Women’s Health; The Mended Hearts, Inc; National Black Nurses Association; National Black Women’s Health Imperative; National Women’s Health Resource Center; North American Menopause Society; The Partnership for Gender-Specific Medicine at Columbia University; Preventive Cardiovascular Nurses Association; Society for Vascular Medicine and Biology; Society for Women’s Health Research; Society of Geriatric Cardiology; Women in Thoracic Surgery; and WomenHeart: the National Coalition for Women with Heart Disease.

Worldwide, cardiovascular disease (CVD) is the largest single cause of death among women, accounting for one third of all deaths. In many countries, including the United States, more women than men die every year of CVD, a fact largely unknown by physicians. The public health impact of CVD in women is not related solely to the mortality rate, given that advances in science and medicine allow many women to survive heart disease. For example, in the United States, 38.2 million women (34%) are living with CVD, and the population at risk is even larger. In China, a country with a population of approximately 1.3 billion, the age-standardized prevalence rates of dyslipidemia and hypertension in women 35 to 74 years of age are 53% and 25%, respectively, which underscores the enormity of CVD as a global health issue and the need for prevention of risk factors in the first place. As life expectancy continues to increase and economies become more industrialized, the burden of CVD on women and the global economy will continue to increase.

The human toll and economic impact of CVD are difficult to overstate. In the United States alone, $403 billion was estimated to be spent in 2006 on health care or in lost...
productivity as a result of CVD, compared with $190 billion for cancer and $29 billion for human immunodeficiency virus (HIV). Prevention of CVD is paramount to the health of every woman and every nation. Even modest control could have an enormous impact. It is projected that a reduction in the death rate due to chronic diseases by just 2% over 1 decade would prevent 36 million deaths.6

Fortunately, most CVD in women is preventable. In 1999, the American Heart Association (AHA) published a scientific statement titled “A Guide to Preventive Cardiology in Women,” which was based on a 1997 review of the literature that documented unique aspects of risk factor management and the occurrence of CVD in women.7,8 Over the subsequent decade, many landmark clinical trials in the prevention of CVD altered the practice of medicine. In 2003, a systematic literature search was conducted to develop evidence-based guidelines for the prevention of CVD in women.9 Demand for clinical trial evidence increased in the wake of the Women’s Health Initiative’s discordant findings with observational studies of hormone therapy.10 Some commonly used preventive interventions lacked clinical trial data for women, and it was unclear whether results of studies conducted in men could be generalized to women. Since the 2003 literature review, numerous clinical trials that have a bearing on CVD prevention in women have been completed (see Appendix). These new research findings must be interpreted in the context of existing data and as-yet missing information so they can be translated appropriately into practice. With few exceptions (eg, the use of aspirin for primary prevention of heart disease), recommendations to prevent CVD in women do not differ from those for men. Healthcare providers should be aware that in some instances, the risk-reducing interventions recommended in these guidelines (eg, angiotensin-converting enzyme inhibitors and angiotensin receptor blockers for blood pressure control) are contraindicated in women contemplating pregnancy or in those who are pregnant.

This 2007 update provides the most current clinical recommendations for the prevention of CVD in women ≥20 years of age and is based on a systematic search of the highest-quality science, interpreted by experts in the fields of cardiology, epidemiology, family medicine, gynecology, internal medicine, neuorlogy, nursing, public health, statistics, and surgery. These guidelines cover the primary and secondary prevention of chronic atherosclerotic vascular diseases. More acute management of vascular disease in the periprocedural or immediate posthospital settings and of valvular heart disease is covered in other AHA guidelines. Management of heart failure, atrial fibrillation for stroke prevention, and CVD risk factors during pregnancy is beyond the scope of the present document.

CVD Risk Assessment in Women

The 2004 guidelines emphasized the importance of recognizing the spectrum of CVD and thus classified women as being at high risk, intermediate risk, lower risk, and optimal risk. Classification was based on clinical criteria and/or the Framingham global risk score.11 These criteria are still used to help guide lipid therapy. The 2007 update recommends a scheme for a general approach to the female patient that classifies her as at high risk, at risk, or at optimal risk (Table 1). The rationale for the change includes several factors: (1) The average lifetime risk for CVD in women is very high, approaching 1 in 2, so prevention is important in all women;12,13: (2) most clinical trial data used to formulate the recommendations included either women at high risk because of known CVD or apparently healthy women with a spectrum of risk, which allowed the current scheme to align the guidelines with the evidence; and (3) there has been a growing appreciation of the limitations of risk stratification with the Framingham risk function in diverse populations of women, including the narrow focus on short-term (10-year) risk of myocardial infarction and coronary heart disease death, lack of inclusion of family history, overestimation or underestimation of risk in nonwhite populations, and the documentation of subclinical disease among many women who score as being at low risk.14

The panel believed that a Framingham global risk score >20% could be used to identify a woman at high risk but that a lower score is not sufficient to ensure that an individual woman is at low risk. Even the presence of a single risk factor at 50 years of age is associated with a substantially increased lifetime absolute risk for CVD and shorter duration of

TABLE 1. Classification of CVD Risk in Women

<table>
<thead>
<tr>
<th>Risk Status</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>High risk</td>
<td>Established coronary heart disease</td>
</tr>
<tr>
<td></td>
<td>Cerebrovascular disease</td>
</tr>
<tr>
<td></td>
<td>Peripheral arterial disease</td>
</tr>
<tr>
<td></td>
<td>Abdominal aortic aneurysm</td>
</tr>
<tr>
<td></td>
<td>End-stage or chronic renal disease</td>
</tr>
<tr>
<td></td>
<td>Diabetes mellitus</td>
</tr>
<tr>
<td></td>
<td>10-Year Framingham global risk >20%*</td>
</tr>
<tr>
<td>At risk</td>
<td>≥1 major risk factors for CVD, including:</td>
</tr>
<tr>
<td></td>
<td>Cigarette smoking</td>
</tr>
<tr>
<td></td>
<td>Poor diet</td>
</tr>
<tr>
<td></td>
<td>Physical inactivity</td>
</tr>
<tr>
<td></td>
<td>Obesity, especially central adiposity</td>
</tr>
<tr>
<td></td>
<td>Family history of premature CVD (CVD at <55 years of age in male relative and <65 years of age in female relative)</td>
</tr>
<tr>
<td></td>
<td>Hypertension</td>
</tr>
<tr>
<td></td>
<td>Dyslipidemia</td>
</tr>
<tr>
<td></td>
<td>Evidence of subclinical vascular disease (eg, coronary calcification)</td>
</tr>
<tr>
<td></td>
<td>Metabolic syndrome</td>
</tr>
<tr>
<td></td>
<td>Poor exercise capacity on treadmill test and/or abnormal heart rate recovery after stopping exercise</td>
</tr>
<tr>
<td>Optimal risk</td>
<td>Framingham global risk <10% and a healthy lifestyle, with no risk factors</td>
</tr>
</tbody>
</table>

CVD indicates cardiovascular disease.

*Or at high risk on the basis of another population-adapted tool used to assess global risk.
survival.13 Women who are at risk of CVD because they have ≥1 risk factor for heart disease, evidence of subclinical disease with or without risk factors, poor exercise capacity, or unhealthy lifestyles may have a broad range of risk for CVD. For example, a woman found to have coronary calcification or increased carotid intimal thickness may be at low absolute risk of CHD on the basis of the Framingham score, but she may actually be at intermediate or high risk of a future CVD event. Healthcare providers should take several factors into consideration, including medical and lifestyle history, Framingham risk score, family history of CVD, and other genetic conditions (eg, familial hypercholesterolemia), as they make decisions about the aggressiveness of preventive therapy. The optimal risk category has been maintained in the present update and emphasizes the importance of optimizing modifiable risk, especially with regard to maintaining a healthy lifestyle, and may reassure some women or motivate others.

The role that novel CVD risk factors (eg, high-sensitivity C-reactive protein) and novel screening technologies (eg, coronary calcium scoring) should play in guiding preventive interventions is not yet defined. Further research is needed on added benefits, risks, and costs associated with such strategies before they can be incorporated into guidelines. Unique opportunities to identify women’s risk (eg, during pregnancy) also deserve further exploration. For example, preeclampsia may be an early indicator of CVD risk.15,16 Women with preeclampsia/eclampsia are significantly more likely to develop hypertension and cerebrovascular disease.15,16 In addition, maternal placental syndromes in combination with traditional cardiovascular risk factors, such as prepregnancy hypertension or diabetes mellitus, obesity, dyslipidemia, or metabolic syndrome, may be additive in defining CVD risk in women.16 Future research should evaluate the potential for events or medical contact during unique phases in a woman’s lifespan, such as adolescence, pregnancy, and menopause, to identify women at high risk and to determine the effectiveness of preventive interventions during critical time periods.

Several important changes from the 2004 guidelines should be noted. First, the approach to risk stratification of women places greater emphasis on lifetime risk than on short-term absolute risk, defined by the Framingham global score, in part because of the limitations described above. The panel acknowledged that nearly all women are at risk for CVD, which underscores the importance of a heart-healthy lifestyle. Additionally, some women are at high risk of future events because of established CVD and/or multiple risk factors. These women are candidates for more aggressive preventive therapy. Second, more definitive data about menopausal therapy, aspirin therapy, and folic acid therapy have been published in recent years, and the guidelines have been revised accordingly. Of note is that aspirin therapy should be considered for all women for stroke prevention, depending on the balance of risks and benefits. Finally, an algorithm is provided to assist healthcare providers in evaluating CVD risk in women and prioritizing preventive interventions.

Methods

Selection of Expert Panel
The AHA Manuscript Oversight Committee commissioned the update of the guidelines and approved the chair of the expert panel, who was a nonvoting member of the panel. The leadership of each AHA scientific council and interdisciplinary working group was asked to nominate a recognized expert in CVD prevention who had particular knowledge about women. Major professional or government organizations with a mission consistent with CVD prevention were solicited to serve as cosponsors and were each asked to nominate 1 representative with full voting rights to serve on the expert panel. Each panel member completed a conflict-of-interest statement and was asked to abstain from discussion of or voting on any recommendations they deemed to be a potential conflict of interest. Panelists also suggested diverse professional and community organizations to endorse the final document after its approval by the AHA Science Advisory and Coordinating Committee and cosponsoring organizations.

Selection of Topics and Systematic Search
The expert panel reviewed the list of recommendations in the 2004 guidelines and suggested additional topics to be researched to determine whether they warranted discussion or a clinical recommendation. The methods for the systematic search were similar to those for the research conducted in 2003 and described previously.9 The time period for the updated search was January 2003 through June 7, 2006. New topics were searched electronically on 3 databases from their inception (Medline, 1966 through June 7, 2006; CINAHL, 1982 through June 7, 2006; and PsychInfo, 1872 through June 7, 2006).

Briefly, studies were included if they were randomized clinical trials or large prospective cohort studies (>1000 subjects) of CVD risk–reducing interventions; meta-analyses that used a quantitative systematic review process, or surrogate end-point studies with at least 10 cases of major clinical CVD end points reported. The systematic search was conducted by the Duke Center for Clinical Health Policy Research, Durham, NC. Table 2 lists the number of articles included/excluded for each category of recommendation. A total of 5774 articles were initially identified; 828 were included for full-text screening, and 246 met the inclusion criteria and were included in the evidence tables. Some proposed new topics were searched but not included in the guidelines because the expert panel determined the data were insufficient to make clinical recommendations (eg, yoga/stress reduction) or because the topic had been covered in other recent guidelines (eg, treatment of atrial fibrillation for stroke prevention).17,18 The summary evidence used by the expert panel can be obtained online as a Data Supplement at http://circ.ahajournals.org/cgi/content/full/CIRCULATIONAHA.107.181546/DC1.

Evidence Rating and Recommendation Procedures
A series of conference calls to discuss recommendations was conducted. Primary and secondary reviewers were assigned to each recommendation to modify any wording and to ensure that the evidence tables were complete for that topic. Each expert received a final copy of the evidence tables and voted independently on the strength of the recommendation (Class I, IIa, IIb, or III) and level of evidence (A, B, or C) as outlined in Table 3. The final rating of evidence was determined by a
majority vote. Modifications to text and clinical recommendations were made on the basis of peer review comments and cosponsor reviews. The guidelines were then finalized and approved by the expert panel.

Clinical Recommendations and Limitations

Evidence-based recommendations for the prevention of CVD in women are listed in Table 4. Each recommendation is accompanied by the strength of recommendation and the level of evidence to support it. The strength of the recommendation is based not only on the level of evidence to support a clinical recommendation but also on other factors, such as the feasibility of conducting randomized controlled trials in women. Recommendations are grouped in the following categories: lifestyle interventions, major risk factor interventions, and preventive drug interventions. Table 5 lists Class III interventions that are not recommended for the prevention of CVD, or myocardial infarction in particular, on the basis of current evidence.

The expert panel tried to simplify the guidelines as much as possible while attempting to preserve the integrity of the evidence-based process. This required the assumption of a class effect for most therapeutic interventions, and it should be noted that data are limited with regard to gender differences in any potential class effects. Although most agents in a single therapeutic class share similar efficacy in reducing CVD risk, the safety profiles and costs may vary significantly among agents; healthcare providers should take these factors into consideration as they prescribe pharmacotherapy to prevent CVD.

The panel also emphasizes that the effectiveness of therapies prescribed in the actual office or hospital setting may vary substantially from the efficacy and safety profiles observed in clinical trials because of wide variations in

<table>
<thead>
<tr>
<th>Topic</th>
<th>Abstracts Identified</th>
<th>Articles Included for Full-Text Screening</th>
<th>Meta-Analyses Identified</th>
<th>Articles Included for Evidence Tables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperlipidemia</td>
<td>166</td>
<td>27</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>Physical activity</td>
<td>298*</td>
<td>53†</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Smoking</td>
<td>281</td>
<td>71</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Antiplatelet therapy</td>
<td>402</td>
<td>95‡</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>Hypertension</td>
<td>78</td>
<td>32</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>β-Blocker therapy</td>
<td>234</td>
<td>17</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Cardiac rehabilitation</td>
<td>298*</td>
<td>53†</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>ACE/ARB therapy</td>
<td>251</td>
<td>44</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>Weight management</td>
<td>52</td>
<td>4</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>119</td>
<td>14</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Hormone replacement therapy/SERMs§</td>
<td>154</td>
<td>24</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Diet modification</td>
<td>144</td>
<td>123‡</td>
<td>1</td>
<td>28</td>
</tr>
<tr>
<td>Warfarin, antiplatelet therapy.§</td>
<td>460</td>
<td>73</td>
<td>23</td>
<td>27</td>
</tr>
<tr>
<td>Aspirin for primary prevention</td>
<td>7</td>
<td>95†</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Psychosocial/depression</td>
<td>409</td>
<td>42</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Antioxidant supplementation</td>
<td>48</td>
<td>13</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Omega-3 fatty acid supplementation</td>
<td>87</td>
<td>23</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Folic acid supplementation, vitamin B6.§ vitamin B12§</td>
<td>192</td>
<td>36</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>New search terms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcohol</td>
<td>325</td>
<td>123‡</td>
<td>0</td>
<td>57</td>
</tr>
<tr>
<td>CHF rehabilitation</td>
<td>388</td>
<td>31</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>PVD rehabilitation</td>
<td>94</td>
<td>22</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Yoga/stress reduction</td>
<td>83</td>
<td>20</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Aldosterone blocker</td>
<td>239</td>
<td>7</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Stroke rehabilitation</td>
<td>1263</td>
<td>57</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Total</td>
<td>5774</td>
<td>828</td>
<td>77</td>
<td>246</td>
</tr>
</tbody>
</table>

ACE indicates angiotensin-converting enzyme; ARB, angiotensin receptor blocker; SERMs, selective estrogen-receptor modulators; CHF, congestive heart failure; and PVD, peripheral vascular disease.

*Physical activity and cardiac rehabilitation were combined during the initial literature search and full-text screening phase. This number reflects the total number of abstracts identified and articles included at full text as physical activity or cardiac rehabilitation.

†Antiplatelet therapy for coronary artery disease and aspirin for primary prevention were combined during the full-text screening phase. This number reflects the total number of articles included at full text as antiplatelet therapy for coronary artery disease or aspirin for primary prevention.

‡Diet modification and alcohol were combined during the full-text screening phase. This number reflects the total number of articles included at full text as diet modification or alcohol.

§New search term for 2006 combined with previous 2003 topic.
patient characteristics and adherence to therapy as prescribed. Guideline development has limitations related to the generalizability of results from one population to another. The net clinical impact of an intervention may not be reflected in the scope of CVD outcomes evaluated in these guidelines. Moreover, many studies used to formulate recommendations did not include older women, especially those >80 years of age, in whom CVD and comorbidities are common. Healthcare providers should use clinical judgment about the aggressiveness of preventive interventions in all women, especially older women.

Guideline Implementation

A suggested algorithm for the prevention of CVD in women that incorporates the updated guidelines is presented in the Figure. Although a comprehensive plan to maximize implementation of the guidelines in various practice settings is beyond the scope of this document, barriers to CVD prevention should be discussed with women. A previous study by the AHA has documented numerous barriers to heart health in women; chief among them was confusion by mixed messages from the media. Other barriers that healthcare providers can address were as follows: 36% of women did not perceive themselves to be at risk, 25% said their healthcare provider did not say heart health was important, and 1 in 5 said healthcare providers did not clearly explain how they could change their risk status. Physicians have cited lack of insurance coverage as a barrier to assisting their patients with lifestyle changes.

Widespread documentation of lack of adherence to CVD prevention guidelines is available, even among women at high risk of CVD in managed-care settings in the United States in which access and medication coverage are available. Policy makers, healthcare providers, and patients all have roles to play in maximizing adherence to preventive interventions and reducing the burden of CVD. It is also important to recognize that although the causes of CVD are common to all parts of the world, the approaches to its prevention at the societal or individual level will differ among countries for cultural, social, medical, and economic reasons.

Research Needs and Future Directions

The expert panel suggested several gaps in knowledge related to the prevention of CVD that must be addressed to optimize the cardiovascular health of women. More rigorous testing of the impact of guidelines themselves on prevention of risk factors, slowing the progression of risk factors, and reducing the burden of CVD is needed. The development and testing of effective methods to implement guidelines in various healthcare settings, at work sites, and in communities are also research priorities. The role of communication of risk and barriers to CVD prevention should be studied and incorporated into creative methods to disseminate and implement guidelines among diverse populations of women.

The role of genetics in risk stratification and in the responsiveness to preventive interventions is an active and important area of research. Likewise, the role of gender and sex hormones requires further study to understand how they affect outcomes after interventions and how female sex may modify the prognostic value of new biomarkers and measures of subclinical CVD.

Population-wide strategies are necessary to combat the pandemic of CVD in women, because individually tailored interventions alone are likely insufficient to maximally prevent and control CVD. Public policy as an intervention to reduce gender-based disparities in CVD preventive care and improve cardiovascular outcomes among women must become an integral strategy to reduce the global burden of CVD.

TABLE 3. Classification and Levels of Evidence

<table>
<thead>
<tr>
<th>Classification</th>
<th>Level of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class I</td>
<td>A Sufficient evidence from multiple randomized trials</td>
</tr>
<tr>
<td>Class IIa</td>
<td>B Limited evidence from single randomized trial or other nonrandomized studies</td>
</tr>
<tr>
<td>Class IIb</td>
<td>C Based on expert opinion, case studies, or standard of care</td>
</tr>
</tbody>
</table>

Strength of Recommendation

- **Class I**: Intervention is useful and effective.
- **Class IIa**: Weight of evidence/opinion is in favor of usefulness/efficacy.
- **Class IIb**: Usefulness/efficacy is less well established by evidence/opinion.
- **Class III**: Intervention is not useful/effective and may be harmful.

Mosca et al CVD Prevention in Women 5
Major risk factor interventions

Blood pressure—optimal level and lifestyle
Encourage an optimal blood pressure of <120/80 mm Hg through lifestyle approaches such as weight control, increased physical activity, alcohol moderation, sodium restriction, and increased consumption of fresh fruits, vegetables, and low-fat dairy products (Class I, Level B).

Blood pressure—pharmacotherapy
Pharmacotherapy is indicated when blood pressure is ≥140/90 mm Hg or at an even lower blood pressure in the setting of chronic kidney disease or diabetes (≥130/80 mm Hg). Thiazide diuretics should be part of the drug regimen for most patients unless contraindicated or if there are compelling indications for other agents in specific vascular diseases. Initial treatment of high-risk women‡ should be with β-blockers and/or ACE inhibitors/ARBs, with addition of other drugs such as thiazides as needed to achieve goal blood pressure (Class I, Level A).

Lipid and lipoprotein levels—optimal levels and lifestyle
The following levels of lipids and lipoproteins in women should be encouraged through lifestyle approaches: LDL-C <100 mg/dL, HDL-C ≥50 mg/dL, triglycerides <150 mg/dL, and non–HDL-C (total cholesterol minus HDL cholesterol) <130 mg/dL (Class I, Level B). If a woman is at high risk‡ or has hypercholesterolemia, intake of saturated fat should be ≤7% and cholesterol intake ≤200 mg/d (Class I, Level B).

Lipids—pharmacotherapy for LDL lowering, high-risk women
Utilize LDL-C-lowering drug therapy simultaneously with lifestyle therapy in women with CHD to achieve an LDL-C <100 mg/dL (Class I, Level A) and similarly in women with other atherosclerotic CVD or diabetes mellitus or 10-year absolute risk ≥20% (Class I, Level B).

A reduction to <70 mg/dL is reasonable in very-high-risk women§ with CHD and may require an LDL-lowering drug combination (Class IIa, Level B).

Lipids—pharmacotherapy for LDL lowering, other at-risk women
Utilize LDL-C-lowering therapy if LDL-C level is ≥130 mg/dL with lifestyle therapy and there are multiple risk factors and 10-year absolute risk 10% to 20% (Class I, Level B).

Utilize LDL-C-lowering therapy if LDL-C level is ≥160 mg/dL with lifestyle therapy and multiple risk factors even if 10-year absolute risk is <10% (Class I, Level B).

Utilize LDL-C-lowering therapy if LDL ≥190 mg/dL regardless of the presence or absence of other risk factors or CVD on lifestyle therapy (Class I, Level B).

Lipids—pharmacotherapy for low HDL or elevated non–HDL, high-risk women
Utilize niacin® or fibrate therapy when HDL-C is low or non–HDL-C is elevated in high-risk women after LDL-C goal is reached (Class IIa, Level B).

Lipids—pharmacotherapy for low HDL or elevated non–HDL, other at-risk women
Consider niacin® or fibrate therapy when HDL-C is low or non–HDL-C is elevated after LDL-C goal is reached in women with multiple risk factors and a 10-year absolute risk 10% to 20% (Class IIIb, Level B).

Diabetes mellitus
Lifestyle and pharmacotherapy should be used as indicated in women with diabetes (Class I, Level B) to achieve an HbA1C <7% if this can be accomplished without significant hypoglycemia (Class I, Level C).
TABLE 5. Class III Interventions (Not Useful/Effective and May Be Harmful) for CVD or MI Prevention in Women

Menopausal therapy
Hormone therapy and selective estrogen-receptor modulators (SERMs) should not be used for the primary or secondary prevention of CVD (Class III, Level A).

Antioxidant supplements
Antioxidant vitamin supplements (eg, vitamin E, C, and beta carotene) should not be used for the primary or secondary prevention of CVD (Class III, Level A).

Folic acid*
Folic acid, with or without B6 and B12 supplementation, should not be used for the primary or secondary prevention of CVD (Class III, Level A).

Aspirin for MI in women <65 years of age†
Routine use of aspirin in healthy women <65 years of age is not recommended to prevent MI (Class III, Level B).

CVD indicates cardiovascular disease; MI, myocardial infarction.
*Folic acid supplementation should be used in the childbearing years to prevent neural tube defects.
†For recommendation for aspirin to prevent CVD in women ≥65 years of age or stroke in women <65 years of age, please see Table 4.
Evaluation of Cardiovascular Disease Risk:
- Medical/family history
- Symptoms of cardiovascular disease
- Physical examination including BP, body mass index, waist size
- Labs including fasting lipoproteins and glucose
- Framingham risk assessment if no cardiovascular disease or diabetes
- Depression screening in women with cardiovascular disease

Implement Class I Lifestyle Recommendations (Implement in Women at All Risk Levels):
- Smoking cessation
- Heart-healthy eating pattern
- Regular physical activity
- Weight management

Is Woman at High Risk of Cardiovascular Disease?
- Established coronary heart disease
- Cerebrovascular disease
- Peripheral arterial disease
- Abdominal aortic aneurysm
- Diabetes mellitus
- Chronic renal disease
- Global 10-year risk >20%

Recent cardiovascular event, procedure, or congestive heart failure symptoms?
Yes
- Implement Class I Recommendations:
 - BP control
 - LDL therapy (goal <100 mg/dL)
 - Aspirin/antiplatelet agents
 - β-Blocker
 - Angiotensin-converting enzyme/angiotensin receptor blocker
 - Glycemic control in diabetic women
 - Aldosterone blocker in select women

No
- Consider Class II Recommendations:
 - LDL <70 mg/dL in very high-risk women
 - HDL/low-density lipoprotein cholesterol
 - Omega-3 fatty acids
 - Depression referral/treatment

Yes
- Refer to rehabilitation

No
- Implement Class I Recommendations:
 - BP control
 - LDL therapy in select women

Figure. Algorithm for CVD preventive care in women. Labs indicates laboratory tests; BP, blood pressure; LDL, low-density lipoprotein cholesterol; and HDL, high-density lipoprotein cholesterol.

References

Hyperlipidemia Meta-Analyses

Physical Activity

Physical Activity Meta-Analysis

Smoking

Smoking Meta-Analyses

None reported.

Antiplaete Therapy

Antiplaete Therapy Meta-Analyses

Rubboli A, Milandri M, Castelvetri C, Cosmi B. Meta-analysis of trials comparing oral anticoagulation and aspirin versus dual antiplatelet therapy after coronary stenting: clues for the management of patients with an

Hypertension

β-Blocker Therapy Meta-Analysis

Cardiac Rehabilitation

Cardiac Rehabilitation Meta-Analyses

Angiotensin-Converting Enzyme/Angiotensin Receptor Blocker Therapy

Angiotensin-Converting Enzyme/Angiotensin Receptor Blocker Therapy Meta-Analyses

Weight Management Meta-Analyses

Hormone Replacement Therapy/Selective Estrogen-Receptor Modulators

Simon JA, Lin F, Vittinghoff E, Bittner V. The relation of postmenopausal hormone therapy to serum uric acid and the risk of coronary heart disease

Hormone Replacement Therapy/Selective Estrogen-Receptor Modulators Meta-Analysis

Diet Modification

Diet Modification Meta-Analysis

Warfarin, Antiplatelet Therapy, and Antiarrhythmic Therapy in Atrial Fibrillation

clopidogetol compared with clopidogrel alone after recent ischemic stroke or transient ischemic attack in high-risk patients (MATCH): randomised, double-blind, placebo-controlled trial. **Lancet.** 2004;364:331–337.

Olsson SB; Executive Steering Committee on behalf of the SPORTIF III Investigators. Stroke prevention with the oral direct thrombin inhibitor ximelagatran compared with warfarin in patients with non-valvular atrial fibrillation (SPORTIF III): randomised controlled trial. **Lancet.** 2003;362:1691–1698.

Warfarin, Antiplatelet Therapy, and Antiarrhythmic Therapy in Atrial Fibrillation Meta-Analyses

Diener HC; Executive Steering Committee on behalf of the SPORTIF III and V Investigators. Stroke prevention using the oral direct thrombin inhibitor ximelagatran in patients with non-valvular atrial fibrillation: pooled analysis from the SPORTIF III and V studies. **Cerebrovasc Dis.** 2006;21:279–293.

Hankey GJ, Sudlow CL, Dunabin DW. Thienopyridines or aspirin to prevent stroke and other serious vascular events in patients at high risk of vascular disease? A systematic review of the evidence from randomized trials. **Stroke.** 2000;31:1779–1784.

Hart RG, Pearce LA, Koudstaal PJ. Transient ischemic attacks in patients with atrial fibrillation: implications for secondary prevention: the European

Psychosocial/Depression Meta-Analyses

None reported.

Omega-3 Fatty Acid Supplementation

Omega-3 Fatty Acid Supplementation Meta-Analyses

Folic Acid Supplementation/Vitamin B6/Vitamin B12

Boffetta P, Garfinkel L. Alcohol drinking and mortality among men enrolled.

Garg R, Wagener DK, Madans JH. Alcohol consumption and risk of ischemic

Alcohol Meta-Analyses

None reported.

Chronic Heart Failure Rehabilitation

Chronic Heart Failure Rehabilitation Meta-Analyses

Peripheral Vascular Disease Rehabilitation

None reported.

Peripheral Vascular Disease Rehabilitation Meta-Analyses

None reported.

Yoga/ Stress Reduction

Yoga/ Stress Reduction Meta-Analyses

Aldosterone Blocker

Aldosterone Blocker Meta-Analyses

None reported.

Mosca et al CVD Prevention in Women 17
<table>
<thead>
<tr>
<th>Writing Group Member</th>
<th>Employment</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Speakers' Bureau/ Honoria</th>
<th>Ownership Interest</th>
<th>Consultant/Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lori Mosca</td>
<td>Columbia University</td>
<td>NIH (Pfizer) (no salary)</td>
<td>Cholestech (in kind); Dideka (in kind); Liposcience Inc (in kind)*</td>
<td>Abbott; Fournier*; Koz; Merck; Schering-Plough*</td>
<td>None</td>
<td>Eli Lilly; McNeil*; NIH; Novartis*; Pfizer; Sanofi-Aventis*; Schering-Plough*; Unilever*; Waterfront Media*</td>
<td>Educational grants to Columbia University from Cholestech*; Fact Foundation*; Organon*; Pfizer; Reliant*; Unilever*; Waterfront Media*</td>
</tr>
<tr>
<td>Carole L. Banka</td>
<td>La Jolla Institute for Molecular Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Emelia J. Benjamin</td>
<td>Boston University School of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Kathy Berra</td>
<td>Stanford Center for Research & Disease Prevention</td>
<td>None</td>
<td>Kos Pharmaceuticals*</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Cheryl Bushnell</td>
<td>Duke University Medical Center</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Rowena J. Dolor</td>
<td>Duke University Medical Center</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Pfizer*; Wyeth*</td>
</tr>
<tr>
<td>Theodore G. Ganiats</td>
<td>University of California, San Diego</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Pfizer</td>
</tr>
<tr>
<td>Antoninette S. Gomes</td>
<td>University of California at Los Angeles</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Heather L. Gornik</td>
<td>The Cleveland Clinic Foundation</td>
<td>BMS-Sanofi†; Pfizer</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Clarissa Gracia</td>
<td>University of Pennsylvania</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Martha Gulati</td>
<td>Northwestern University</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Constance K. Hsia</td>
<td>University of Florida</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Debra R. Judelson</td>
<td>Cardiovascular Medical Group of Southern California</td>
<td>None</td>
<td>BMS-Sanofi†; Koz; Novartis*; Pfizer*</td>
<td>None</td>
<td>None</td>
<td>Novartis*; Pfizer*</td>
<td>Expert Witness*</td>
</tr>
<tr>
<td>Nora Keenan</td>
<td>Centers for Disease Control and Prevention</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Ellie Kelepouris</td>
<td>Temple University School of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Erin D. Michos</td>
<td>Johns Hopkins School of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>L. Kristin Newby</td>
<td>Duke University Medical Center</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Suzanne Oparil</td>
<td>University of Alabama, Birmingham</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Pamela Ouyang</td>
<td>Johns Hopkins Bayview Medical Center</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Mehmet C. Oz</td>
<td>Columbia University</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>
This table represents the relationships of writing group members that may be perceived as actual or reasonably perceived conflicts of interest as reported on the Disclosure Questionnaire, which all members of the writing group are required to complete and submit. A relationship is considered to be "significant" if (1) the person receives $10,000 or more during any 12-month period, or 5% or more of the person's gross income; or (2) the person owns 5% or more of the voting stock or share of the entity, or owns $10,000 or more of the fair market value of the entity. A relationship is considered to be "modest" if it is less than "significant" under the preceding definition.

*Significant.
†Representation does not imply endorsement by the American College of Physicians.
Reviewer Disclosures

<table>
<thead>
<tr>
<th>Reviewer</th>
<th>Representation</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Speakers' Bureau/Honorary</th>
<th>Ownership Interest</th>
<th>Consultant/Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeffrey L. Anderson</td>
<td>American College of Cardiology Foundation</td>
<td>None</td>
<td>None</td>
<td>Bristol-Myers Squibb*;</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Clinical Expert Consensus Document Task Force</td>
<td></td>
<td></td>
<td>Merck†</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vera Bittner</td>
<td>American College of Cardiology Foundation</td>
<td>National Heart, Lung, and Blood Institute†; Pfizer†; Atherogenics; National Institutes of Health/Kost †</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Pfizer†; Reliant†; CV Therapeutics*</td>
<td>None</td>
</tr>
<tr>
<td>Roger S. Blumenthal</td>
<td>American College of Cardiology Foundation</td>
<td>None</td>
<td>AstraZeneca†; Kasť; Merck†; Pfizer†</td>
<td>None</td>
<td></td>
<td>General Electric†; Pfizer†</td>
<td>None</td>
</tr>
<tr>
<td>Ann Bolger</td>
<td>American Heart Association</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Charles Bridges</td>
<td>Society for Thoracic Surgeons</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Doug</td>
<td>American Academy of Family Physicians</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Campos-Outcalt</td>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Vincent F. Carr</td>
<td>American College of Cardiology Foundation Board of Governors</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>James I. Cleeman</td>
<td>National Heart, Lung and Blood Institute</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Daria E. Danford</td>
<td>National Heart, Lung and Blood Institute</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Karen A. Donato</td>
<td>National Heart, Lung and Blood Institute</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Mark J. Eisenberg</td>
<td>American College of Cardiology Foundation Clinical Expert Consensus Document Task Force</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Victor Ferraris</td>
<td>Society for Thoracic Surgeons</td>
<td>Aventis†; THG Med Co†; Bayer†; BioMarin†; Guilford†; Medtronic†</td>
<td>None</td>
<td>AstraZeneca†; Bayer†; NATA†; THG Med Co†</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Valentin Fuster</td>
<td>World Heart Federation</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Deborah Grady</td>
<td>American College of Physicians</td>
<td>Eli Lilly*</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Sharonne Hayes</td>
<td>American Heart Association</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>David Herrington</td>
<td>American Heart Association</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Mark Hilty</td>
<td>American College of Cardiology Foundation Board of Trustees</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Suzanne Hughes</td>
<td>American College of Cardiology Foundation Board of Trustees</td>
<td>None</td>
<td>None</td>
<td>Biosite†; Kost®; Pfizer®</td>
<td>None</td>
<td>Guidant®; Johnson & Johnson®; Merck®</td>
<td>Associate editor, CardioSource</td>
</tr>
<tr>
<td>Darwin Labarthe</td>
<td>Centers for Disease Control and Prevention</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Robert Lichtenberg</td>
<td>American College of Cardiology Foundation Board of Trustees</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Edward J. Roccella</td>
<td>National Heart, Lung and Blood Institute</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Samuel J. Shubrooks, Jr</td>
<td>American College of Cardiology Foundation Clinical Expert Consensus Document Task Force</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Cynthia Tracy</td>
<td>American College of Cardiology Foundation Clinical Expert Consensus Document Task Force</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Janet S. Wright</td>
<td>American College of Cardiology Foundation Board of Trustees</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Stanley Zinberg</td>
<td>American College of Obstetricians and Gynecologists</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

*This table represents the relationships of reviewers that may be perceived as actual or reasonably perceived conflicts of interest as reported on the Disclosure Questionnaire, which all reviewers are required to complete and submit.

*Modest.
†Significant.
Stroke Rehabilitation

Stoke Rehabilitation Meta-Analyses

Acknowledgments

We are grateful to the Duke Center for Clinical Health Policy Research, Durham, NC, for conducting and summarizing the systematic literature searches. Persons from Duke who contributed to this project include: Rowena J. Dolor, MD, MHS, L. Kristin Newby, MD, MHS; Lori A. Bastian, MD, MPH; Jeffrey S. Berger, MD, MS; Laura Leigh Fitzpatrick, MD, MPH; Camille G. Frazier, MD; R. Julian Irvine, MSM; Radha Goel Kachhy, MD; Wanda Lakey, MD; Lillian F. Lien, MD; Chiara Melloni, MD; Viranga Pathiraja, MPH; John L. Petersen, MD; Zainab Samad, MD; Svati H. Shah, MD, MHS; Tracy Y. Wang, MD, MS; and Karen L. Ziegler, RN, MSN, FNP. The chair also thanks Donna Stephens for her assistance in coordinating the expert panel and Lisa Rehm for assisting with the preparation of the manuscript. The Expert Panel appreciated the thoughtful comments from peer reviewers and sponsoring and endorsing organizations.

Key Words: AHA Scientific Statements ■ women ■ cardiovascular diseases ■ prevention ■ risk factors